Computational prediction of electrical and thermal conductivities of disklike particulate composites
نویسندگان
چکیده
The effective conductivities are determined for randomly oriented disklike particles using an efficient computational algorithm based on the finite element method. The pairwise intersection criteria of disks are developed using a set of vector operations. An element partition scheme has been implemented to connect the elements on different disks across the lines of intersection. The computed conductivity is expressed as a function of the disk density and size. It is further expressed in a power-law form with the key parameters determined from curve fitting. The particle number and the trial number of simulations vary with the disk size to minimize the computational effort in search of the percolation paths. The estimated percolation threshold agrees very well with the result reported in the literature. It has been confirmed that the statistical invariant for percolation is a cubic function of the characteristic size, and that the definition of percolation threshold is consistent with that of the equivalent system containing spherical particles. Binary dispersions of disks of different radii have also been investigated to study the effect of the size distribution. The approximate solutions in the power-law function have potential applications in advanced composites with embedded graphene nanoplatelets (GNPs).
منابع مشابه
Thermal and electrical conductivity of Aluminium Nitride nanofluids
This study was designed to experimentally measure the thermal and electrical conductivities of Aluminium Nitride/Ethylene Glycol (AlN/EG) nanofluids. Transmission electron microscopy (TEM) was used to characterize the shape of AlN nanoparticles. Nanofluids with different particle volume concentrations of 0.5%, 1%, 2%, 3%, 4%, and 5% were utilized. The thermal and electrical conductivities of the...
متن کاملThermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites
Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions...
متن کاملOptimal design of manufacturable three-dimensional composites with multifunctional characteristics
We present an optimization method to design three-dimensional composite microstructures with multifunctional characteristics. To illustrate the fascinating types of microstructures that can arise in multifunctional optimization, we apply our methodology to the study the simultaneous transport of heat and electricity in three-dimensional, two-phase composites. We assume that phase 1 has a high t...
متن کاملElectrical and thermal conductivities of reduced graphene oxide/polystyrene composites
Articles you may be interested in Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels J. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets Appl. High thermal conductivity epoxy-sil...
متن کاملAnisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites
Thermal interfacematerials (TIMs) are crucial components of high density electronics and the high thermal conductivity of graphite makes this material an attractive candidate for such applications. We report an investigation of the in-plane and through-plane electrical and thermal conductivities of thin thermal interface layers of graphite nanoplatelet (GNP) based composites. The in-plane elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015